Inspections Copyright 2002, Steve Oualline Page 1

Inspections

Shielrer Tent inspection

Inspections Copyright 2002, Steve Oualline Page 2

On the surface

Nice puppy!

I love the
pony tail!

What a cute
little girl!

Inspections Copyright 2002, Steve Oualline Page 3

But an inspection shows

I'm adult not a baby!

I'm wearing a Top Knot, not a pony tail!

and

Inspections

I'm not
a girl!

Inspections Copyright 2002, Steve Oualline Page 5

Why Inspect?

e Itis the single best way of reducing errors.

e It produces not only better code but better
programmers.

Copyright 2002, Steve Oualline

Types of Inspections

1) Checklists

2) Master Coder Review
3) Walkthroughs

4) Data Analysis

i

Page 6

Inspections Copyright 2002, Steve Oualline Page 7

Checklists

 Quick
e Simple
e Large return on the time invested

e (Can lead to surprisingly good results

Inspections Copyright 2002, Steve Oualline Page 8

Designing the Rules

Before we can create a checklist we need something
to check.

e Style Sheets

e Programming Rules

Inspections Copyright 2002, Steve Oualline Page 9

Style Rules

Inspections Copyright 2002, Steve Oualline Page 10

Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

 Instantly verifiable

Inspections

> Watforg
Chalfont
Blatimer § o tey
Amarsham
4 Ehorierwood
e Moor Park

Wt Ruistip Morthwoad

Copyright 2002, Steve Oualline

= Harow &
Wealgstane

Maorthwaod Hills

Simple

Stanmaore

Canan Park

Queenrisbury

Edgware
Buarnt Oak

Calindale

Hign marmes Cockfosters

Tatteridge &
Whatitone

Woodiide Park
West Finchley

Finchiny Central DOUREs Green

Page 11

Ingdan R Hendon Central e
Prner 2 ood Green
Futslip Manar . Xantan Eant Finchty t
N TIr— !
Wabridge uenham Fastoote - et Kingatury Highgate TumplieLine than Wesdford
& .
i Archway Manor House o WEIthamtow
Ruslp Gardens of | " .) — PRI, W it s
West Harrgw Harrowe < \ nall Par Sisters T ond A out! .
Lane onthe-Hal & Vi \\9\“9' Qak o Road 2= Woedtard Barkingside
A South Rulslip 4 s Keatiah Tawn
" Sonth g Adlesden Goeen './ T et Arsenal Finabory Par Brwbury Park
| Sout . 3 Snarestronk Rectricge
Haseem bwwm " Finchlvy Rosd Hallgmay Rosc
worthot /e Kentish Warttead Gant
T Town ™ CaledoniznAong . i [ih
_ Sudbary f N e Haptena s YU comdennoas ayen Leytonttons 4 & Yominster,
%= Greenfard Hil Brendesbary Finchiey Road CamaenTown e e | Upminster Bridge.
KensslGreen ‘I- - Homehuich
/ Swins Cattage . Caledonian Hightuny & Balingion RN
Parivate 2 ST Jahe's Wosd =H:wm R " Levtend LmPark
“*9 - o ~Cletient Wing's Croms Barnabur: Hac i Pt e,
. swabuary Town L bk St Panran ol . Canonbary porovinil e Cageriham East
e Malda Vat Edgware & Baker Great x — - DagearamHeathway
// . u Road Marylebone Setreat Partlang Euston Dalsten Homurton T * Becantres
Warvick Avenue Strmet Kingiioms : s Strattord Upney
MangerLane b Aipertan Royal Oak 0" 2 i o
w e Par
itbourna Park ‘Pacgingron ECEWNE - Barking
Lacticke Giave £ RON gaad Saquate P Baxt Mam
) i b
Fark Royal P " Uptan Park
Latimer Rowd Bayswater E- L] Plastow
treet
West Ham
NorthEaling White Haltand Marbia
Park T AP— Halbarn
“a Lating Brosgway (O - T - - L) i S
Weat Eant Shepherd's Motting Lancaster Band ttenham Chancery
AT e || AEE0 Bush MillGate Gate Street Caurt Road Lang +
Contal]| Shepharers toi } Highstraet Covanc Qurden Cannen
/| h B Kaenmslngton o - ¥
atin, " 1 | ¢ Kensington 3 treet A
! 1cm< : . ¢ akteater 7 ¥ .| Street
Galghawi | Myde Park Corner, 2
Rosd Fegresbiid i, gy Cutzom Mo
i e, Charing B‘“"""“o Mansion k Princs Regent
Barons | Gieucester Cross T o Tample House .
oy Rayal Albe
Scuth Esling D:TUV"'/ Hamenersmich () Court Road Sloane | N A

Geeen t
Heathrow
Tarriaals Hounslow Sentral
L33 Hounaiow Weat
HattonCross

GuARErLbury

Kew Gardens
Heathrow
Tarminal 4 +

Richmand S

UNDERGROUND

rEation 0171-223-1134
meck 0171.323-1200

E Loncon Regianal Trany

Turnhaen Stamford Rivensoourt
Book Park

West
Kensingron

« Wt Bromatan «

Son
Kensi

Eari's.

Court

Fislhaen Broadwiry

Farions Green

Putney Bridge

Emt Putney

- Seuthiieles

Wimbledon Park

Square s, Westmirater

St Jamen's

Wictoria
i Park

ath
nEtan

& Watarloe

C

B

Embankment

Southwark

Canada
Water

Nenh
Greenwich

Heron Guays
Sauth Ouy o

Wiateries b City +
Dacklands Light Rallway 1 =

sndonBridge 5 o n
Lendon Bridge Crossharbous 4 Sitvertown Beckion
" = & Longe
Surrey Guays Modchute 1f ity AMpeT
Bland Gardens == 4 Nerth Wealwich
e
& Maw Cross Gate Biew Cross
Key to [T ——— © interchange stations
Lines Central weswsssss EXITITE Pesk mers % Connextions with Britsh Rail
ity o Connections with Brzish Rai within
ki o walking ditance
Last Lomsien
Hammerimith & Cry
Fublien mes— Marrington Crescent closed for rebulding
Metrepcitan wemssssss TEErrra
Norther —ee—
Piceacilly s TERLTEE Pu bours sy
Vigtog s

For cpening times see poster journay planners
Cavtain 3tations aw ciosed CuNAg BuBlc helieiys
Diarw 14 4 5%

Inspections

Copyright 2002, Steve Oualline Page 12

Bad Password Picking

Rule

*CORPORATE DIRECTIVE NUMBER 88-570471

*In order to increase the security of all company computing facilities, and to avoid the possibility of unauthorized use of these facilities, new rules are
being put into effect concerning the selection of passwords. All users of computing facilities are instructed to change their passwords to conform to these
rules immediately.

*RULES FOR THE SELECTION OF PASSWORDS:
*1. A password must be at least six characters long, and must not contain two occurrences of a character in a row, or a sequence of two or more
characters from the alphabet in forward or reverse order.

*Example: HGQQXP is an invalid password. GFEDCB is an invalid password.

*2. A password may not contain two or more letters in the same position as any previous password. Example: If a previous password was GKPWTZ,
then NRPWHS would be invalid because PW occurs in the same position in both passwords.

*3. A password may not contain the name of a month or an abbreviation for a month. Example: MARCHBC is an invalid password. VWMARBC is an
invalid password.

*4. A password may not contain the numeric representation of a month. Therefore, a password containing any number except zero is invalid. Example:
WKBH3LG is invalid because it contains the numeric representation for the month of March.

*5. A password may not contain any words from any language. Thus, a password may not contain the letters A, or I, or sequences such as AT, ME, or
TO because these are all words.

*6. A password may not contain sequences of two or more characters which are adjacent to each other on a keyboard in a horizontal, vertical, or
diagonal direction. Example: QWERTY is an invalid password. GHNLWT is an invalid password because G and H are horizontally adjacent to each
other. HUKWVM is an invalid password because H and U are diagonally adjacent to each other.

*7. A password may not contain the name of a person, place, or thing. Example: JOHNBQY is an invalid password.

*Because of the complexity of the password selection rules, there is actually only one password which passes all the tests. To make the selection of this
password simpler for the user, it will be distributed to all supervisors. All users are instructed to obtain this password from his or her supervisor and
begin using it immediately.

Inspections Copyright 2002, Steve Oualline Page 13

Rules must be Simple

*Chapter 3 of "C Elements of Style" contains over
20 pages of rules on how to name a variable. No
one can remember all of them.
(http://www.oualline.com.)

*VS.

eVariable names are all lower case,
whole words (or industry standard
abbreviations) separated by underscore.

«Example: count_of_events.

Inspections Copyright 2002, Steve Oualline Page 14

Designing the Rules

e Simple
 Explained

(People follow the rules better if they know there was a good
reason behind the creation of the rule.)

* Unambiguous. Binary. (it's right or it's wrong --
no debate)

 Instantly verifiable

Inspections Copyright 2002, Steve Oualline Page 15

Explained

* Or not.... 1.]1# - tl '“:'."t -H
£
s, Gy

i .-l ; Y W _
I ____ - ""_;#1"' _

Inspections Copyright 2002, Steve Oualline Page 16

Rule Design

e The reason behind the rule must be documented.

(People follow the rules better if they know there was a good
reason behind the creation of the rule.)

Inspections Copyright 2002, Steve Oualline Page 17

Example

v9) Abbreviations are not to be used in variable
names except for _ptr and industry

standard acronyms.

Inspections Copyright 2002, Steve Oualline Page 18

Why?

« How many ways can you spell
ground_point?

* (A "ground point" is a basic unit of measurement
used throughout software used to analyze aerial

photographs.)

Inspections Copyright 2002, Steve Oualline Page 19

Ground Point

* gp
e gnd_pt
e ground_point

e GroundPolnt

Inspections Copyright 2002, Steve Oualline Page 20

Reason for the rule:

e FError reduction

There are many different abbreviations for "ground" and
"point". Especially when you consider that many
programmers abbreviate by throwing out random letters.

There is only one full spelling of "ground".

Inspections Copyright 2002, Steve Oualline Page 21

Reasons for the Rule

e Make things easy programmers who's primary
language is not English.

You can find "ground" in a Finnish-English dictionary. Try
looking up "gndpnt".

Inspections Copyright 2002, Steve Oualline Page 22

Feedback: Errors =>
Rules

When an error occurs:

1) Not only fix the error but,
2) Determine the cause of the error

3) See if you can devise a rule to prevent a recurrence of
the error.

Inspections Copyright 2002, Steve Oualline Page 23

Example

 The error:
struct id_type 1d_data;

memset(&1d_data, '\O0',
sizeof(struct name_id_type));

e This causes random memory to be zeroed.

Inspections Copyright 2002, Steve Oualline Page 24

The Rule

Whenever possible, the third argument to memset must
be sizeof(first[O0]).

eExample:
ememset(f_ptr, '\0', sizeof(f_ptr[0]));
memset(&st, '\0', sizeof(st));

Inspections Copyright 2002, Steve Oualline Page 25

Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

 Instantly verifiable

Inspections Copyright 2002, Steve Oualline Page 26

Unambiguous

Inspections Copyright 2002, Steve Oualline Page 27

Ambiguous

Bad Rule

 Heading comments must clearly describe the
function that follows.

Inspections Copyright 2002, Steve Oualline Page 28

Unambiguous

Good Rule

D1 All variable declarations must end in a
comment describing the variable

int count; // Count of 1tems the
// data array (Right)
int svm; (Wrong)

Inspections Copyright 2002, Steve Oualline Page 29

Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

* Instantly verifiable

Inspections Copyright 2002, Steve Oualline Page 30

Instant Verification

g
S

Inspections Copyright 2002, Steve Oualline Page 31

Hard to verify

Bad Rule

* All loops must exit or be marked as infinite
loops.

Inspections Copyright 2002, Steve Oualline Page 32

Easy to Verify

e All case statements must end in:
o break;

¢ Or

o // Fall through

Inspections Copyright 2002, Steve Oualline Page 33

Templates

Inspections Copyright 2002, Steve Oualline Page 34

Templates Help Keep
Things Standard

./**

« * funct_name -- One line description of the function
Multi-line description of what the function does.

*
*
*
*
Memory usage: *
Indicate if the function allocates memory *
and if so, how the memory 1is to be disposed of. *
*

*

*

*

*

*

*

If the function disposes of memory, indicate
who you expect to have allocated it.

Returns:
What does the function return.

*
*
*
*
*
*
*
*
*
*
*
*
R i i b b b i i i i b i i i i i i i b b i i i S S i i i i i S i i i i e i i S b i i i i i i S b i i i i b o /
extern int16 funct_name(

const 1int32 paraml,// Description of the first parameter

const int32 param2 // Description of the second parameter

°);

Inspections Copyright 2002, Steve Oualline Page 35

Checklist

Inspections Copyright 2002, Steve Oualline Page 36

Array Protection

. Al) All array accesses must protected by
an assert statement. (Exceptions are allowed
only in those cases where it's absolutely
impossible to determine the array bounds.)

o Reason: Array protection
o assert((1 >= 0) &&

S (1 < sizeof(array)/
. sizeof(array[0])));
o) X = array[i];

Inspections

Copyright 2002, Steve Oualline Page 37

Avoiding Evil Procedures

 A2) Use of the following functions prohibited:

a.
b.
C.
d.

strcpy
strcat
gets
sprintf

. Reason: These functions can easily
cause memory memory problems.

Inspections Copyright 2002, Steve Oualline Page 38

Avoiding Evil Procedures

e Don't Use Use

« Strcpy strncpy
« Strcat strncat
e gets fgets

e Sprintf snprintf

Inspections Copyright 2002, Steve Oualline Page 39

File Related Rules

e F1 File uses standard comment structure for
the heading. (See programming template.)

*Reason: It doesn't matter which standard we use, as
long as everyone uses the same standard.

Inspections Copyright 2002, Steve Oualline Page 40

File Related Checklist

2 Files should no be longer than 3,000 lines and
only unusual files use be longer than 6,000 lines

long.

*Reason: A person should be able to
understand a complete file. Too long and
it's not possible to understand. Also files
longer than 3,000 lines are more difficult to

edit and print.

Inspections Copyright 2002, Steve Oualline Page 41

File Related Rule

e F3 The file compiles without warnings with
full compiler warnings turned on.

*Reason: Let the compiler check as much as
possible so that error don't make it into the
source.

Inspections Copyright 2002, Steve Oualline Page 42

Procedure Related Rules

e P1 All procedures have a standard comment
heading.

*Reason: Everyone needs to do things the same
way.

Inspections

Copyright 2002, Steve Oualline

Procedure Example

Page 43

./***

*

*

*
*
*
*

close 1n file

Close the 1input file.
Returns
O -- Success
NZ -- Error code (see errno.h)

* ok ok F ¥ X

***/

)

estatic 1int close_1in_file(

/* The file to 1nitialize */
struct 1n file struct *the file

Inspections Copyright 2002, Steve Oualline Page 44

Procedure Related Rules

« P2 All private functions are declared static

*Reason: Scope of a all functions should be as
limited as possible. If a function is static then
we know the scope is limited to the file in

which it is declared.

Inspections Copyright 2002, Steve Oualline Page 45

Procedure Related Rules

« P3 All public functions have a prototype in the
header file.

*Reason: If we put the prototypes in a standard
place we know where to find them.

Inspections Copyright 2002, Steve Oualline Page 46

Procedure Related Rules

e P4 The return type of a function does not
default

*Reasons: If the programmer lets the return type
default we can't tell the difference between a
function that should return an int and a function
where the programmer forgot to put in a return
type.

Inspections Copyright 2002, Steve Oualline Page 47

Procedure Rules

e P5 Function and variable definitions in header
files must be declared extern.

*Reason: Be consistent Treat external data and
procedures the same. Use extern.

Inspections Copyright 2002, Steve Oualline Page 48

Procedure Rules

e P6 Modules must include all the header files
which contain external definitions of functions
and variables defined in the file. (In other words
if foo.h contains

extern 1int foo_size;

and foo.c defines Too_si1ze then foo.c must
include foo.h.

*Reason: Gives us a standard place where
external declarations are put.

Inspections Copyright 2002, Steve Oualline Page 49

Indentation

e [I1 Indentation is 4 spaces. Tab stops are every
8 spaces.

*Reason: Studies at Rice University have shown
that 4 spaces makes the code the most readable.

*The default tab stop on most terminals is 8.

Inspections Copyright 2002, Steve Oualline Page 50

Indentation

e [2 Curly braces are on separate lines indented
the same as the statement that precedes them.

*Reason: No good reason for this placement, but
we need some standard.

Inspections Copyright 2002, Steve Oualline Page 51

Indentation

e I3 Statements inside curly braces are indented
one level.

*Reason: There are many variations of
indentation. We needed to pick one.

Inspections Copyright 2002, Steve Oualline Page 52

Variables

e V1 Variables are lower case words separated by
underscores (this_1s_a_var)

*Reason: It doesn't matter which naming
convention you use as long as it's simple and
everyone uses the same one.

Inspections Copyright 2002, Steve Oualline Page 53

Bad Naming Conventions

*What are the rules for X Motit constants and

variables?

° XmNtextHighlightCallback
xmTextwWidgetClass
wWidgetClass

*What's the naming convention for the
Microsoft Windows API?

Inspections Copyright 2002, Steve Oualline Page 54

Microsoft Notation Evil

* Microsoft or Hungarian Notation uses a
type prefix in front of each variable It's
bad because:

e It obscures the variable name.

e It gives the programmer type information
of little interest to him.

e The type information is featured more
prominently than other information about
the variable, like what it does.

Inspections Copyright 2002, Steve Oualline Page 55

Microsoft Notation Evil

*Microsoft Notation
changes depending on:

 Which API you are
using

e Which version of the
API you are using

* The phase of the
moon

Inspections Copyright 2002, Steve Oualline Page 56

Variables

V2 Constants are upper case words separated
by underscores. (THIS_IS_A_CONST)

*Reason: We need some simple convention for
everyone. This one works.

Inspections Copyright 2002, Steve Oualline Page 57

Variables

V3 No int declarations. (Use uint8, 1nt8,
uintl6, intl6, uint32, 1nt32 instead.)

*Reason: The size of an int can vary. If we use
these types, we know how big our integers are.

Inspections Copyright 2002, Steve Oualline Page 58

Variables

e V4 One declaration per line. (Exception:
Highly coupled variables, i.e. width and

height.)

*Reason: By declaring one variable per line and
commenting them, we produce a dictionary
gives us simple definitions for all the special
words (variables) we use in our program.

Inspections Copyright 2002, Steve Oualline Page 59

Variables

—

e V5 All declarations have a comment after them
explaining the variable.

*Reason: Produces a mini-dictionary explaining
your words.

Inspections Copyright 2002, Steve Oualline Page 60

Variables

e V6 Units are declared when appropriate.

e Reason: Avoids unit confusion.

Inspections Copyright 2002, Steve Oualline Page 61

Variables

e V7 No hidden variables. That is, a variable
defined in an inner block may not have the same
name as variable in an outer block.

e Reason: Hidden variables cause name
confusion.

Inspections Copyright 2002, Steve Oualline Page 62

Variables

e V8 Never use "O" (Capital O) or "1" (lower
case "1"") for variable or constant names.

e Reason: Avoids confusion

Inspections Copyright 2002, Steve Oualline Page 63

Avoiding Parking Tickets

*T0 avoid parking tickets, a fellow ordered a special
personalized license plate. His three choices were:

. 1) 000000 2)1I1I1I 3) 00000000

*He figured that it would be impossible for the
police to copy down the license number.

Inspections Copyright 2002, Steve Oualline Page 64

Parking Tickets Il

eUnfortunately no DVM clerk could read the
license as well. He got a plate which read:

« 000000

Inspections Copyright 2002, Steve Oualline Page 65

Statements

e S1 No side effects. The operators ++ and --
must be on lines by themselves.

*Reason: Avoids problems. Doing many simple
things is simpler than doing one complex thing.

«// Wrong -- ambiguous
ei = arrayl[i++] + array2[i++];

// Right
i = arrayl[i] + array2[i+1];
1 += 2;

Inspections Copyright 2002, Steve Oualline Page 66

Statements

e S2 The assignment operator (=) is not used
inside an if or other statements.

 Reasons: Avoids confusion and helps prevent
eITors.

Inspections Copyright 2002, Steve Oualline Page 67

Switch Statements

e S3 All switch statements have a default case.
(Evenifitis /* Do nothing */.)

*Reason: It forces the programmer to consider
the default case and tells other programmers
what the default case should do.

Inspections Copyright 2002, Steve Oualline Page 68

Statements

e S4 The last case of a switch should end with a
break.

*Reason: You may add to the switch later and
forget to add the break to the previous case.

Inspections Copyright 2002, Steve Oualline Page 69

Statements

e S5 Empty statements must contain continue or
/* Do nothing */

1w,

e Reason: The statement ";" makes a lousy empty
statement because it's so hard to see.

Inspections Copyright 2002, Steve Oualline Page 70

Switch Example

« switch (cmd) {

o case 'A':

o do_power_down();
o // Fall through
o case 'B':

o do_reset();

o break;

o default:

o // Do nothing

o break;

Inspections Copyright 2002, Steve Oualline Page 71

Preprocessor

—
« R1 The backslashes (\) for a multi-line #define
are in the same column.

 Reason: It makes it easy to make sure that you
put a backslash at the end of each line:

« #define CHECK_CALL(funct)
\

o status = funct();
\

o 1f (status '= 0) {

\

Inspections Copyright 2002,

Switches

Rule 25a;: Breakmen
must remain at least
25 feet away from a
switch while a train
passes over it.

i

l:lf-uj‘_i T

- m:l |
L 5 L - L)
i = o e M
il e |
. i,
o
. e | p
- - -_ I -
1 -
& ; d 1 .
r helE g™
5 NE |
i I ’

1

r =
'. 'f'-l? ."I " L] r._ ke
4

'_...'_ ~ A : T
T lim

L
-
N
1%
-
=

o lr:.'.__ _-

- ‘f.]i'_-‘

T PCE ~§2{

s l."‘ﬁ_ _I'- |-I- l'ﬂ hi —r

-l.'l

Inspections Copyright 2002, Steve Oualline Page 73

Switches

e Reason:

e 1) Breakmen have been know to throw a switch

while a train in going over it. If they're 25 away
this is less likely to happen.

e 2) Derailments frequently occur at switches. It's
safer to be somewhere else when that happens.

Inspections Copyright 2002, Steve Oualline Page 74

Preprocessor

—
e R2 Use typedef instead of #define. to define
new types.

e Reason: Less error prone.
o

e #define CHAR PTR char *

« CHAR_PTR foo0, bar;

 What is the type of "bar"?

Inspections Copyright 2002, Steve Oualline Page 75

typedef vs. #define

o e #define CHAR PTR char *

« CHAR_PTR foo, bar;
e // Result
« char *foo, bar;

e --- bar of of type char

« // Better
« typedef char *CHAR_PTR

. CHAR_PTR foo, bar

Inspections Copyright 2002, Steve Oualline Page 76

Preprocessor

—
e R3 Use const instead of #define to define
constants.

e Reason: Less error prone

« #defline SIZE 23 + 34 // Wrong
e« const int SIZE = 23 + 34; //
Right

d::cout << SIZE * 2 << '\n':

Inspections Copyright 2002, Steve Oualline Page 77

Preprocessor

—
e R4 Put parenthesis around all parameters used
in a parameterized macro definition.

 Reason: Safety again.

« // Wrong
« #defline SQUARE(X) (X * X)
e« 1 = SQUARE(3 + 4); // Trouble

// This 1s better
// But still dangerous
#define SQUARE(X) ((x) * (X))

Inspections Copyright 2002, Steve Oualline Page 78

Preprocessor

—
e R5 Use inline functions instead of
parametrized macros.

e Better:

estatic i1nline 1nt SQUARE(

o const 1nt X

)

{

o return (x * X);

3

Inspections Copyright 2002, Steve Oualline Page 79

Preprocessor

—
e R6 #define should never be used to redefine C
or C++ keywords. Specifically, it they keyword
extern should never be redefined.

e Never, never, never!!!

e #defilne extern /* */
e #1nclude "local vars.h"
e #undef extern

Inspections Copyright 2002, Steve Oualline Page 80

This will get you shot

Inspections Copyright 2002, Steve Oualline Page 81

Inspections Copyright 2002, Steve Oualline Page 82

Memory

« M1 All malloc and related calls have their
return value checked against NULL.

*Reason: Never assume your program won't run
out of memory. It may.

Inspections Copyright 2002, Steve Oualline Page 83

Memory

e M2 Every malloc has a corresponding free.
Every new has a corresponding delete.

 Reason: Avoids memory leaks.

Inspections Copyright 2002, Steve Oualline Page 84

Memory

e M3 Every malloc has a comment explaining
where the free is done. The same rule applies
for new and delete.

*Reason: Make the programmer think about
where memory is deleted and thus helps
avoids memory leaks.

*Also helps maintenance programmers

know where memory to is supposed to be
freed

Inspections Copyright 2002, Steve Oualline Page 85

Memory

e M4 Byte streams should have their length
checked to prevent overruns. (Example: use
strncpy instead of strcpy.)

 Reason: Buffer overflows are a major cause of
security problem and other bugs.

Inspections Copyright 2002, Steve Oualline Page 86

Memory

e M5 Every procedure that allocates memory
which the caller must free, must document this
fact in the function header.

e Reason: Avoids confusion. All allocations
should be obvious.

Inspections Copyright 2002, Steve Oualline Page 87

Memory

e M6 Every memcpy function code should be of
the form:

e memcpy(ptr, src,
sizeof (ptr[0])); whenever possible.

Specifically, the third parameter should be
sizeof the data pointed to by the first parameter.

e Reason: Avoids memory overwrites.

Inspections Copyright 2002, Steve Oualline Page 88

Memory

e M7 A similar rule should be followed for
memset.

e Reason: Avoids memory overwrites.

Inspections Copyright 2002, Steve Oualline Page 89

How to Perform an
Inspection

1) Give our code to one
to five inspectors for
inspectors.

Inspections Copyright 2002, Steve Oualline Page 90

How to Perform an
Inspection

2) The inspectors
perform the
inspection.

Inspections Copyright 2002, Steve Oualline

How to Perform an
Inspection

Page 91

M U . 3) The inspectors turn
'Fql—___—:--..__h ':_,fr,,x ;.,:_"-. o

===y, IiET the results in to the
=TSR
.:{f:_ " "_‘j 'I __—;—-=:_§2 programimer.

P =T 4) Defects are fixed.
Y Ei
-

Inspections Copyright 2002, Steve Oualline Page 92

How to Perform an
Inspection

5) Metrics are reported.

Inspections Copyright 2002, Steve Oualline

Inspection Results

Page 93

Return types defaults
1s_1in(

exclude_struct *exclude,/* Exclude information */
const char file_name[] /* Name of the file to look for */

N~

char *cur_file; qgbeetiiantfile_characton *“/ ...
char *cur_data;
while (*cur_file++) {
switch (*cur_data) {
case '\n':
if (*cur_file == '\0")
return (1); /* Found it */
/* Didn't find it,
cur_f1i =
cur_data++;

try next variable */

- ™ Case ends incorrectly
/* Skip past the newline */

case '\0':
reiurn (0); 7% DidnTt FLAGLE
}

W -/

Inspections Copyright 2002, Steve Oualline Page 94

Metrics

Name of Inspector

Program Inspected

Start Time

End Time

Elapsed Time

i lines inspected

defects found (checklist)

t non-checklist defects found

Inspections Copyright 2002, Steve Oualline Page 95
Metrics
Ins. ¥ lines |Rate # defects p defects [Defect density
Name |[Ins. (In /hour)|(C-List) |(Non-CL) /K In code

Total

Inspections Copyright 2002, Steve Oualline Page 96

Results of Good
Inspection Process

Defect Density (Defects per 1000 lines of code)

10 P

90+

80 «

70+

60 «

50

Density

40

30

20

10 L] L] L] L}
07/01/02 07/03/02 07/05/02 07/07/02 07/09/02

Date

Inspections Copyright 2002, Steve Oualline Page 97

Master Code Review

*The programmer sits down with
a master coder and explains his
code.

eMaster Coders know all about:
e How to design
e How to code

e Clean and clear coding

Inspections Copyright 2002, Steve Oualline Page 98

Master Code Review

e Master
coders are
also know a
lot about what
not to do.

Inspections Copyright 2002, Steve Oualline Page 99

Inspections:
Walkthroughs

*Where the
programmer leads a
team of inspectors
through his code.

Inspections Copyright 2002, Steve Oualline Page 100

Walkthrough Technique

e 1) Inspectors are selected. (At least one senior
programmer should participate.)

e 2) The programmer provides the code to be
inspected to the inspectors.

* 3) A meeting is held where the programmer goes
through his code. (In any order he wants to.)

4) Defects are recorded by each inspector
on their copy of the code.

5) Programmer fixes defects

6) Metric Report Produced

Inspections Copyright 2002, Steve Oualline Page 101

Rules of Thumb

eInspection
meetings should
be about 1 hour
long. Any
shorter and you're
not inspecting
enough.

*Any longer and
people get
restless and want
to leave.

Inspections Copyright 2002, Steve Oualline Page 102

Conflicts

o "Is it a defect or
not? "

The programmer
decides.

e It's her code.

e She must make it
work.

e Her review is based
on this code.

e If it doesn't work it's
her fault.

Inspections Copyright 2002, Steve Oualline Page 103

Keep on Track

1 *The purpose of a code review
is to review code.

It's not to:
e Discuss coding technique

e Talk about efficiency or
algorithms.

* Discuss other people's code.

e Prove how smart you are.

Inspections Copyright 2002, Steve Oualline Page 104

Metrics

*Don't forget the
paperwork.

Metrics are
important.

Inspections Copyright 2002, Steve Oualline Page 105

Data Flow Analysis

e (Concentrates on the data, not the procedures
* Very good for finding memory leaks

e Useful for handling message systems such a
protocol stacks

 Time consuming

Inspections Copyright 2002, Steve Oualline Page 106

Data Flow Analysis
Technique

e This inspection system is similar to a

walkthrough except the programmer follows the
data.

e Data is traced from where it is allocated to where
it is freed.

* Messages are traced from where they are
received to where they are disposed of.

Inspections Copyright 2002, Steve Oualline Page 107

Uses for Data Flow
Analysis

e Eliminating memory leaks in programs where
memory is critical. (i.e. embedded systems.)

e Protocol Stacks or other message passing
systems.

Inspections Copyright 2002, Steve Oualline Page 108

Selling the System

The one thing that sells something to management:

Inspections Copyright 2002, Steve Oualline Page 109

Inspections

e Reduces the number of defects in the software
released to the testers.

* Less time is needed for testing.

* Less time is spent fixing bugs in the code.

o’ Releases can be made faster.

e Money!

Inspections Copyright 2002, Steve Oualline Page 110

Inspections

e Reduces the defects made in to code released
to the user.

e (Customer service costs are reduced.
* (Customer satisfaction is improved.

* Recalls and patches are reduced.

e Money!

Inspections Copyright 2002, Steve Oualline Page 111

Inspections

e Make better programmers.

* FErrors are eliminated before they start.
e Result is better code.

e Result is higher productivity.

e Money!

Inspections Copyright 2002, Steve Oualline Page 112

Remember the Metrics

Defect Density (Defects per 1000 lines of code)

1005

90+

80 s

70

60 s

Density

50

40

30

20

10 L L L] L
07/01/02 07/03/02 07/05/02 07/07/02 07/09/02

Date

Inspections Copyright 2002, Steve Oualline Page 113

Overcoming Management
Objections

 Management: We don't have enough time to do
inspections. We have a schedule to keep.

 Al: Inspections save time.

* AZ2:Is our goal to produce software, or to
produce working software. We need inspections
to make sure our software works.

Inspections Copyright 2002, Steve Oualline Page 114

Overcoming Management
Objections

 Management: We don't have enough resources to
do inspections.

* A: It will take more resources to fix the problems
caused by lack of inspections.

Inspections Copyright 2002, Steve Oualline Page 115

Overcoming Management
Objections

 Management: We'll deploy inspection "real soon

"

now .

 A: How many unnecessary errors are going to
happen in that time?

Inspections Copyright 2002, Steve Oualline Page 116

Why Inspection Systems
Fail

Inspections Copyright 2002, Steve Oualline Page 117

The Perfection Trap

. Trap: We must produce the perfect
coding style guide and inspection rules
before we can proceed.

. Result: Perfection is never achieved and
the deployment of the inspection process
endlessly waits for the design process to
finish.

Inspections Copyright 2002, Steve Oualline Page 118

Approval Trap

e Approval list:

Software lead

Assistant software lead

I'T Manager

Project Lead

Team Lead

Department Head

Vice President in charge of software
Vice President in charge of forms
Third assistant Janitor

Result: You never
get all these people
to agree

Inspections Copyright 2002, Steve Oualline Page 119

Onerous Process Trap

Don't make the

process so
difficult and
onerous that no
one wants to do
it.

Inspections Copyright 2002, Steve Oualline Page 120

Lack of Metrics

*Without
metrics you
can't tell how
well the
process is
doing.

