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Inspections

Shielrer Tent inspection
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On the surface

Nice puppy!

I love the
pony tail!

What a cute
little girl!
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But an inspection shows

I'm adult not a baby!

I'm wearing a Top Knot, not a pony tail!

and
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I'm not
a girl!
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Why Inspect?

e Itis the single best way of reducing errors.

e It produces not only better code but better
programmers.
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Types of Inspections

1) Checklists

2) Master Coder Review
3) Walkthroughs

4) Data Analysis

i
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Checklists

 Quick
e Simple
e Large return on the time invested

e (Can lead to surprisingly good results
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Designing the Rules

Before we can create a checklist we need something
to check.

e Style Sheets

e Programming Rules
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Style Rules
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Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

 Instantly verifiable
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Bad Password Picking

Rule

*CORPORATE DIRECTIVE NUMBER 88-570471

*In order to increase the security of all company computing facilities, and to avoid the possibility of unauthorized use of these facilities, new rules are
being put into effect concerning the selection of passwords. All users of computing facilities are instructed to change their passwords to conform to these
rules immediately.

*RULES FOR THE SELECTION OF PASSWORDS:
*1. A password must be at least six characters long, and must not contain two occurrences of a character in a row, or a sequence of two or more
characters from the alphabet in forward or reverse order.

*Example: HGQQXP is an invalid password. GFEDCB is an invalid password.

*2. A password may not contain two or more letters in the same position as any previous password. Example: If a previous password was GKPWTZ,
then NRPWHS would be invalid because PW occurs in the same position in both passwords.

*3. A password may not contain the name of a month or an abbreviation for a month. Example: MARCHBC is an invalid password. VWMARBC is an
invalid password.

*4. A password may not contain the numeric representation of a month. Therefore, a password containing any number except zero is invalid. Example:
WKBH3LG is invalid because it contains the numeric representation for the month of March.

*5. A password may not contain any words from any language. Thus, a password may not contain the letters A, or I, or sequences such as AT, ME, or
TO because these are all words.

*6. A password may not contain sequences of two or more characters which are adjacent to each other on a keyboard in a horizontal, vertical, or
diagonal direction. Example: QWERTY is an invalid password. GHNLWT is an invalid password because G and H are horizontally adjacent to each
other. HUKWVM is an invalid password because H and U are diagonally adjacent to each other.

*7. A password may not contain the name of a person, place, or thing. Example: JOHNBQY is an invalid password.

*Because of the complexity of the password selection rules, there is actually only one password which passes all the tests. To make the selection of this
password simpler for the user, it will be distributed to all supervisors. All users are instructed to obtain this password from his or her supervisor and
begin using it immediately.
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Rules must be Simple

*Chapter 3 of "C Elements of Style" contains over
20 pages of rules on how to name a variable. No
one can remember all of them.
(http://www.oualline.com.)

*VS.

eVariable names are all lower case,
whole words (or industry standard
abbreviations) separated by underscore.

«Example: count_of_events.
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Designing the Rules

e Simple
 Explained

(People follow the rules better if they know there was a good
reason behind the creation of the rule.)

* Unambiguous. Binary. (it's right or it's wrong --
no debate)

 Instantly verifiable
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Explained
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Rule Design

e The reason behind the rule must be documented.

(People follow the rules better if they know there was a good
reason behind the creation of the rule.)
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Example

v9) Abbreviations are not to be used in variable
names except for _ptr and industry

standard acronyms.
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Why?

« How many ways can you spell
ground_point?

* (A "ground point" is a basic unit of measurement
used throughout software used to analyze aerial

photographs.)
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Ground Point

* gp
e gnd_pt
e ground_point

e GroundPolnt
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Reason for the rule:

e FError reduction

There are many different abbreviations for "ground" and
"point". Especially when you consider that many
programmers abbreviate by throwing out random letters.

There is only one full spelling of "ground".
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Reasons for the Rule

e Make things easy programmers who's primary
language is not English.

You can find "ground" in a Finnish-English dictionary. Try
looking up "gndpnt".
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Feedback: Errors =>
Rules

When an error occurs:

1) Not only fix the error but,
2) Determine the cause of the error

3) See if you can devise a rule to prevent a recurrence of
the error.
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Example

 The error:
struct id_type 1d_data;

memset(&1d_data, '\O0',
sizeof(struct name_id_type));

e This causes random memory to be zeroed.
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The Rule

Whenever possible, the third argument to memset must
be sizeof(first[O0]).

eExample:
ememset(f_ptr, '\0', sizeof(f_ptr[0]));
memset(&st, '\0', sizeof(st));
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Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

 Instantly verifiable
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Unambiguous
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Ambiguous

Bad Rule

 Heading comments must clearly describe the
function that follows.
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Unambiguous

Good Rule

D1  All variable declarations must end in a
comment describing the variable

int count; // Count of 1tems the
// data array (Right)
int svm; (Wrong)
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Designing the Rules

e Simple
e Explained

 Unambiguous. Binary rules (it's right or it's
wrong -- no debate)

* Instantly verifiable
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Instant Verification

g
S
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Hard to verify

Bad Rule

* All loops must exit or be marked as infinite
loops.
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Easy to Verify

e All case statements must end in:
o break;

¢ Or

o // Fall through
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Templates
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Templates Help Keep
Things Standard

./********************************************************

« * funct_name -- One line description of the function
Multi-line description of what the function does.

*
*
*
*
Memory usage: *
Indicate if the function allocates memory *
and if so, how the memory 1is to be disposed of. *
*

*

*

*

*

*

*

If the function disposes of memory, indicate
who you expect to have allocated it.

Returns:
What does the function return.

*
*
*
*
*
*
*
*
*
*
*
*
R i i b b b i i i i b i i i i i i i b b i i i S S i i i i i S i i i i e i i S b i i i i i i S b i i i i b o /
extern int16 funct_name(

const 1int32 paraml,// Description of the first parameter

const int32 param2 // Description of the second parameter

°);
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Checklist
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Array Protection

. Al) All array accesses must protected by
an assert statement. (Exceptions are allowed
only in those cases where it's absolutely
impossible to determine the array bounds.)

o Reason: Array protection
o assert((1 >= 0) &&

S (1 < sizeof(array)/
. sizeof(array[0])));
o) X = array[i];
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Avoiding Evil Procedures

 A2) Use of the following functions prohibited:

a.
b.
C.
d.

strcpy
strcat
gets
sprintf

. Reason: These functions can easily
cause memory memory problems.
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Avoiding Evil Procedures

e Don't Use Use

« Strcpy strncpy
« Strcat strncat
e gets fgets

e Sprintf snprintf
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File Related Rules

e F1 File uses standard comment structure for
the heading. (See programming template.)

*Reason: It doesn't matter which standard we use, as
long as everyone uses the same standard.
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File Related Checklist

2 Files should no be longer than 3,000 lines and
only unusual files use be longer than 6,000 lines

long.

*Reason: A person should be able to
understand a complete file. Too long and
it's not possible to understand. Also files
longer than 3,000 lines are more difficult to

edit and print.
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File Related Rule

e F3 The file compiles without warnings with
full compiler warnings turned on.

*Reason: Let the compiler check as much as
possible so that error don't make it into the
source.
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Procedure Related Rules

e P1 All procedures have a standard comment
heading.

*Reason: Everyone needs to do things the same
way.
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Procedure Example

Page 43

./*****************************************

*

*

*
*
*
*

close 1n file

Close the 1input file.
Returns
O -- Success
NZ -- Error code (see errno.h)

* ok ok F ¥ X

*****************************************/

)

estatic 1int close_1in_file(

/* The file to 1nitialize */
struct 1n file struct *the file
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Procedure Related Rules

« P2 All private functions are declared static

*Reason: Scope of a all functions should be as
limited as possible. If a function is static then
we know the scope is limited to the file in

which it is declared.
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Procedure Related Rules

« P3 All public functions have a prototype in the
header file.

*Reason: If we put the prototypes in a standard
place we know where to find them.
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Procedure Related Rules

e P4 The return type of a function does not
default

*Reasons: If the programmer lets the return type
default we can't tell the difference between a
function that should return an int and a function
where the programmer forgot to put in a return
type.
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Procedure Rules

e P5 Function and variable definitions in header
files must be declared extern.

*Reason: Be consistent Treat external data and
procedures the same. Use extern.
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Procedure Rules

e P6 Modules must include all the header files
which contain external definitions of functions
and variables defined in the file. (In other words
if foo.h contains

extern 1int foo_size;

and foo.c defines Too_si1ze then foo.c must
include foo.h.

*Reason: Gives us a standard place where
external declarations are put.
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Indentation

e [I1 Indentation is 4 spaces. Tab stops are every
8 spaces.

*Reason: Studies at Rice University have shown
that 4 spaces makes the code the most readable.

*The default tab stop on most terminals is 8.
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Indentation

e [2 Curly braces are on separate lines indented
the same as the statement that precedes them.

*Reason: No good reason for this placement, but
we need some standard.
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Indentation

e I3 Statements inside curly braces are indented
one level.

*Reason: There are many variations of
indentation. We needed to pick one.
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Variables

e V1 Variables are lower case words separated by
underscores (this_1s_a_var)

*Reason: It doesn't matter which naming
convention you use as long as it's simple and
everyone uses the same one.
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Bad Naming Conventions

*What are the rules for X Motit constants and

variables?

° XmNtextHighlightCallback
xmTextwWidgetClass
wWidgetClass

*What's the naming convention for the
Microsoft Windows API?
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Microsoft Notation Evil

* Microsoft or Hungarian Notation uses a
type prefix in front of each variable It's
bad because:

e It obscures the variable name.

e It gives the programmer type information
of little interest to him.

e The type information is featured more
prominently than other information about
the variable, like what it does.
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Microsoft Notation Evil

*Microsoft Notation
changes depending on:

 Which API you are
using

e Which version of the
API you are using

* The phase of the
moon
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Variables

V2 Constants are upper case words separated
by underscores. (THIS_IS_A_CONST)

*Reason: We need some simple convention for
everyone. This one works.
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Variables

V3 No int declarations. (Use uint8, 1nt8,
uintl6, intl6, uint32, 1nt32 instead.)

*Reason: The size of an int can vary. If we use
these types, we know how big our integers are.
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Variables

e V4 One declaration per line. (Exception:
Highly coupled variables, i.e. width and

height.)

*Reason: By declaring one variable per line and
commenting them, we produce a dictionary
gives us simple definitions for all the special
words (variables) we use in our program.
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Variables

—

e V5 All declarations have a comment after them
explaining the variable.

*Reason: Produces a mini-dictionary explaining
your words.
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Variables

e V6 Units are declared when appropriate.

e Reason: Avoids unit confusion.
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Variables

e V7 No hidden variables. That is, a variable
defined in an inner block may not have the same
name as variable in an outer block.

e Reason: Hidden variables cause name
confusion.




Inspections Copyright 2002, Steve Oualline Page 62

Variables

e V8 Never use "O" (Capital O) or "1" (lower
case "1"") for variable or constant names.

e Reason: Avoids confusion




Inspections Copyright 2002, Steve Oualline Page 63

Avoiding Parking Tickets

*T0 avoid parking tickets, a fellow ordered a special
personalized license plate. His three choices were:

. 1) 000000 2)1I1I1I 3) 00000000

*He figured that it would be impossible for the
police to copy down the license number.
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Parking Tickets Il

eUnfortunately no DVM clerk could read the
license as well. He got a plate which read:

« 000000
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Statements

e S1 No side effects. The operators ++ and --
must be on lines by themselves.

*Reason: Avoids problems. Doing many simple
things is simpler than doing one complex thing.

«// Wrong -- ambiguous
ei = arrayl[i++] + array2[i++];

// Right
i = arrayl[i] + array2[i+1];
1 += 2;
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Statements

e S2 The assignment operator (=) is not used
inside an if or other statements.

 Reasons: Avoids confusion and helps prevent
eITors.
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Switch Statements

e S3 All switch statements have a default case.
(Evenifitis /* Do nothing */.)

*Reason: It forces the programmer to consider
the default case and tells other programmers
what the default case should do.
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Statements

e S4 The last case of a switch should end with a
break.

*Reason: You may add to the switch later and
forget to add the break to the previous case.
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Statements

e S5 Empty statements must contain continue or
/* Do nothing */

1w,

e Reason: The statement ";" makes a lousy empty
statement because it's so hard to see.
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Switch Example

« switch (cmd) {

o case 'A':

o do_power_down();
o // Fall through
o case 'B':

o do_reset();

o break;

o default:

o // Do nothing

o break;
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Preprocessor

—
« R1 The backslashes (\) for a multi-line #define
are in the same column.

 Reason: It makes it easy to make sure that you
put a backslash at the end of each line:

« #define CHECK_CALL(funct)
\

o status = funct();
\

o 1f (status '= 0) {

\
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Rule 25a;: Breakmen
must remain at least
25 feet away from a
switch while a train
passes over it.
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Switches

e Reason:

e 1) Breakmen have been know to throw a switch

while a train in going over it. If they're 25 away
this is less likely to happen.

e 2) Derailments frequently occur at switches. It's
safer to be somewhere else when that happens.
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Preprocessor

—
e R2 Use typedef instead of #define. to define
new types.

e Reason: Less error prone.
o

e #define CHAR PTR char *

« CHAR_PTR foo0, bar;

 What is the type of "bar"?
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typedef vs. #define

o e #define CHAR PTR char *

« CHAR_PTR foo, bar;
e // Result
« char *foo, bar;

e --- bar of of type char

« // Better
« typedef char *CHAR_PTR

. CHAR_PTR foo, bar
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Preprocessor

—
e R3 Use const instead of #define to define
constants.

e Reason: Less error prone

« #defline SIZE 23 + 34 // Wrong
e« const int SIZE = 23 + 34; //
Right

d::cout << SIZE * 2 << '\n':
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Preprocessor

—
e R4 Put parenthesis around all parameters used
in a parameterized macro definition.

 Reason: Safety again.

« // Wrong
« #defline SQUARE(X) (X * X)
e« 1 = SQUARE(3 + 4); // Trouble

// This 1s better
// But still dangerous
#define SQUARE(X) ((x) * (X))
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Preprocessor

—
e R5 Use inline functions instead of
parametrized macros.

e Better:

estatic i1nline 1nt SQUARE(

o const 1nt X

)

{

o return (x * X);

3
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Preprocessor

—
e R6 #define should never be used to redefine C
or C++ keywords. Specifically, it they keyword
extern should never be redefined.

e Never, never, never!!!

e #defilne extern /* */
e #1nclude "local vars.h"
e #undef extern




Inspections Copyright 2002, Steve Oualline Page 80

This will get you shot
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Memory

« M1 All malloc and related calls have their
return value checked against NULL.

*Reason: Never assume your program won't run
out of memory. It may.
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Memory

e M2 Every malloc has a corresponding free.
Every new has a corresponding delete.

 Reason: Avoids memory leaks.
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Memory

e M3 Every malloc has a comment explaining
where the free is done. The same rule applies
for new and delete.

*Reason: Make the programmer think about
where memory is deleted and thus helps
avoids memory leaks.

*Also helps maintenance programmers

know where memory to is supposed to be
freed
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Memory

e M4 Byte streams should have their length
checked to prevent overruns. (Example: use
strncpy instead of strcpy.)

 Reason: Buffer overflows are a major cause of
security problem and other bugs.
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Memory

e M5 Every procedure that allocates memory
which the caller must free, must document this
fact in the function header.

e Reason: Avoids confusion. All allocations
should be obvious.
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Memory

e M6 Every memcpy function code should be of
the form:

e memcpy(ptr, src,
sizeof (ptr[0])); whenever possible.

Specifically, the third parameter should be
sizeof the data pointed to by the first parameter.

e Reason: Avoids memory overwrites.
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Memory

e M7 A similar rule should be followed for
memset.

e Reason: Avoids memory overwrites.
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How to Perform an
Inspection

1) Give our code to one
to five inspectors for
inspectors.




Inspections Copyright 2002, Steve Oualline Page 90

How to Perform an
Inspection

2) The inspectors
perform the
inspection.
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How to Perform an
Inspection

Page 91

M U . 3) The inspectors turn
'Fql—___—:--..__h ':_,fr,,x ;.,:_"-. o

===y, IiET the results in to the
=TSR
.:{f:_ " "\_‘j 'I __—;—-=:_§2 programimer.

P =T 4) Defects are fixed.
Y Ei
-
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How to Perform an
Inspection

5) Metrics are reported.
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Return types defaults
1s_1in(

exclude_struct *exclude,/* Exclude information */
const char file_name[] /* Name of the file to look for */

N~

char *cur_file;  qgbeetiiantfile_characton *“/ ...
char *cur_data;
while (*cur_file++) {
switch (*cur_data) {
case '\n':
if (*cur_file == '\0")
return (1); /* Found it */
/* Didn't find it,
cur_f1i =
cur_data++;

try next variable */

- ™ Case ends incorrectly
/* Skip past the newline */

case '\0':
reiurn (0); 7% DidnTt FLAGLE
}

W -/
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Metrics

Name of Inspector

Program Inspected

Start Time

End Time

Elapsed Time

i lines inspected

# defects found (checklist)

t non-checklist defects found
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Metrics
Ins. ¥ lines |Rate # defects p defects  [Defect density
Name |[Ins. (In /hour)|(C-List) |(Non-CL) /K In code

Total
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Results of Good
Inspection Process

Defect Density (Defects per 1000 lines of code)
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Master Code Review

*The programmer sits down with
a master coder and explains his
code.

eMaster Coders know all about:
e How to design
e How to code

e Clean and clear coding




Inspections Copyright 2002, Steve Oualline Page 98

Master Code Review

e Master
coders are
also know a
lot about what
not to do.
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Inspections:
Walkthroughs

*Where the
programmer leads a
team of inspectors
through his code.
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Walkthrough Technique

e 1) Inspectors are selected. (At least one senior
programmer should participate.)

e 2) The programmer provides the code to be
inspected to the inspectors.

* 3) A meeting is held where the programmer goes
through his code. (In any order he wants to.)

4) Defects are recorded by each inspector
on their copy of the code.

5) Programmer fixes defects

6) Metric Report Produced
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Rules of Thumb

eInspection
meetings should
be about 1 hour
long. Any
shorter and you're
not inspecting
enough.

*Any longer and
people get
restless and want
to leave.
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Conflicts

o "Is it a defect or
not? "

The programmer
decides.

e It's her code.

e She must make it
work.

e Her review is based
on this code.

e If it doesn't work it's
her fault.
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Keep on Track

1 *The purpose of a code review
is to review code.

It's not to:
e Discuss coding technique

e Talk about efficiency or
algorithms.

* Discuss other people's code.

e Prove how smart you are.
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Metrics

*Don't forget the
paperwork.

Metrics are
important.
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Data Flow Analysis

e (Concentrates on the data, not the procedures
* Very good for finding memory leaks

e Useful for handling message systems such a
protocol stacks

 Time consuming
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Data Flow Analysis
Technique

e This inspection system is similar to a

walkthrough except the programmer follows the
data.

e Data is traced from where it is allocated to where
it is freed.

* Messages are traced from where they are
received to where they are disposed of.
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Uses for Data Flow
Analysis

e Eliminating memory leaks in programs where
memory is critical. (i.e. embedded systems.)

e Protocol Stacks or other message passing
systems.
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Selling the System

The one thing that sells something to management:
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Inspections

e Reduces the number of defects in the software
released to the testers.

* Less time is needed for testing.

* Less time is spent fixing bugs in the code.

o’ Releases can be made faster.

e Money!
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Inspections

e Reduces the defects made in to code released
to the user.

e (Customer service costs are reduced.
* (Customer satisfaction is improved.

* Recalls and patches are reduced.

e Money!
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Inspections

e Make better programmers.

* FErrors are eliminated before they start.
e Result is better code.

e Result is higher productivity.

e Money!
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Remember the Metrics

Defect Density (Defects per 1000 lines of code)
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Overcoming Management
Objections

 Management: We don't have enough time to do
inspections. We have a schedule to keep.

 Al: Inspections save time.

* AZ2:Is our goal to produce software, or to
produce working software. We need inspections
to make sure our software works.




Inspections Copyright 2002, Steve Oualline Page 114

Overcoming Management
Objections

 Management: We don't have enough resources to
do inspections.

* A: It will take more resources to fix the problems
caused by lack of inspections.
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Overcoming Management
Objections

 Management: We'll deploy inspection "real soon

"

now .

 A: How many unnecessary errors are going to
happen in that time?
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Why Inspection Systems
Fail
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The Perfection Trap

. Trap: We must produce the perfect
coding style guide and inspection rules
before we can proceed.

. Result: Perfection is never achieved and
the deployment of the inspection process
endlessly waits for the design process to
finish.
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Approval Trap

e Approval list:

Software lead

Assistant software lead

I'T Manager

Project Lead

Team Lead

Department Head

Vice President in charge of software
Vice President in charge of forms
Third assistant Janitor

Result: You never
get all these people
to agree
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Onerous Process Trap

Don't make the

process so
difficult and
onerous that no
one wants to do
it.
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Lack of Metrics

*Without
metrics you
can't tell how
well the
process is
doing.




