
Regular
Expressions
Made Easy

Operator List

Simple characters match simple characters

/a/ -> a

/b/ -> b

/cd/ -> cd

Regular Expression State
Machine

1. Match current location in the string against the current
node.

2. If it matches, update the string position and move the
next node.

3. When coming to a fork, take the top.
4. If the string does not match a node, go back to the

previous fork and try the lower branch.
5. If you reach the end the match was successful.

Anchors

^Match the beginning of the line
$ Match the end of the line

a-test matches /test/
a-test no match /^test/

Anchor Example

Regular Expression Operators

abc… Exact match
^ Line start
$ Line end
* 0 or more time

* -- Match zero or more
items

/a*b/ matches ab, aab, aaab,
aaaaab

* is greedy (it matches as much as
possible)

Question: Does /a*b/ match “b”?

* Example

sam

something

 # something else

Greedy Operators (i.e. *)

• * Matches as many characters as possible
• WARNING: Greed can surprise you
What does /a*/ match in the following
“test aa of aaa greed “ =~ /a*/

1. It matches “aa”, the first match

3. This is a trick question.

2. It matches “aaa”, the longer match

Hint: * = 0 or more

“test aa of aaa greed “ =~ /a*/

Location of 0 “a”s

Other Common Mistakes

$line = “I got spaces a lot”;

Change spaces to underscore
$line =~ s/\s*/_/;
Wrong

Split out the words (WRONG)
my @words = split /\s*/, $data;

Doing it right

$line = “I got spaces a lot”;

Change spaces to underscore
$line =~ s/\s+/_/;
Right

Split out the words (Right)
my @words = split /\s+/, $data;

Regular Expression
Operators

abc… Exact
match

^ Line start
$ Line end
* 0 or more time
[abc] a or b or c

Example

Regular Expression
Operators

abc… Exact match
^ Line start
$ Line end
* 0 or more time
[abc] a or b or c
[^abc] not a or b or c
. Any character
(…) grouping and \1

Check for repeated
characters

/(.)\1/

Split a line into text
comment

Format of the line
text spaces # comment

Regular expression
/^([^#]*)(#.*$)/

Regular Expression
Commented

 +--------------- Beginning of line
 | ++++---------- Anything except #
 | ||||+--------- 0 or more times
 |+|||||+-------- Put in \1
 |||||||| +------ # (literal)
 |||||||| |++---- Any ch(0 or more times)
 |||||||| |||+--- End of line
 ||||||||+||||+-- Put in \2
/^([^#]*)(#.*$)/

Regular Expression
Operators

abc… Exact match
^ Line start
$ Line end
* 0 or more time
[abc] a or b or c
[^abc] not a or b or c
. Any character
(…) grouping and \1

a|b Match a or b

The quoted string
problem

• Match:
test # comment
“string # nasty” # Comment

• New regular expression
/^(([^#”]*|”.*”)*)(#.*)/;

Problem

• What about
“a string “ # comment has “ inside

• What's matched
“a string “ # comment has “ inside

Regular Expression
Operators

abc… Exact match
^ Line start
$ Line end
* 0 or more time
[abc] a or b or c
[^abc] not a or b or c
. Any character
(…) grouping and \1

a|b Match a or b
*? Like * but not

greedy

Order has flipped. We try and find a “ first

Problem

• The expression:
/^(([^#”]*|”.*”)*)(#.*)/;

puts the operator into $1 and the
comment into $3 (and junk in $2)

/^(([^#”]*|”.*”)*)(#.*)/;

$1 $2 $3

Solution

• New operator (?:…). Like () but no
\1 or $1.

/^((?:[^#”]*|”.*”)*)(#.*)/;

Regular Expression
Operators

abc… Exact match
^ Line start
$ Line end
* 0 or more time
[abc] a or b or c
[^abc] not a or b or c
. Any character
(…) grouping and \1

a|b Match a or b
*? Like * but not

greedy
(?:…) Like ()

but no \1
(?<!x)

Negative look
behind. (The
previous
character can’t
be an x at this
point.)

Final Regular Expression

• Match “xxx” but allow for
“xxx\”yyy”

/^((?:[^#”]*|”.*(?<!\\)”)*)(#.*)/;

Graph

The Challenge

• A regular expression to match
mail addresses:

^(([^<>()[\]\\.,;:\s@\"]+
(\.[^<>()[\]\\.,;:\s@\"]+)*)|
(\".+\"))@((\[[0-9]{1,3}\.
[0-9]{1,3}\.[0-9]{1,3}\.
[0-9]{1,3}\])|
(([a-zA-Z\-0-9]+\.)+
[a-zA-Z]{2,}))$

Graph

