
1

Advanced Vim
Syntax

Programming
and

Scripting

2

Announcement

Managements requests that all the
Emacs chauvinist in the audience
refrain from arguing with the Vim
chauvinist on stage concerning which
editor is better.

Such arguments are generally
considered intellectual combat
between two unarmed opponents.

3

Topics

● Programming the Syntax Engine
● Creating keyboard macros
● Using the :map command
● Basic Functions
● Creating a simple function
● Connecting the editor and the function
● Combining syntax coloring and function

definitions.

4

Topics

● Perl Programming
● Advanced Features

5

The Instructor

Steve Oualline
● Author of “Vim (Vi Improved)”
● Contributed tutorial text material to the

Vim project
● Website http://www.oualline.com
● E-Mail: oualline@www.oualline.com

6

Cheat Sheets

● You should all have a copy of the cheat
sheets showing the scripts and examples
being discussed here.

● These will be referenced throughout the
tutorial.

● Cheat sheets and slides can be
downloaded from:

http://www.oualline.com/vim.talk

7

Programming the
Syntax Engine

8

Cheat Sheet Time

● We will be discussing

1) syntax.sl – Sample file
written in a strange
language.

2) syntax.vim – Syntax
coloring rules for “sl”

9

Getting Started

Clear out the old syntax

:syntax clear

Tell Vim if the language is case sensitive

:syntax case ignore
:syntax case match

10

Highlight

● To see the names of the various highlight
groups

:highlight
● To define your own

:highlight StrangeWord
\ guifg=purple

\ guibg=yellow
● (Many more options available)

11

Define Some Keywords

To define a keyword

:syntax keyword LangWord if then

Use a different highlight for system
functions.

:syntax keyword Function print

Defining a
keyword

Highlight
to use

The
keywords

12

Define elements that match a
regular expression

Define a match for an identifier

:syntax match Identifier

\ /[_a-zA-Z][_a-zA-Z0-9]*/

Now define an element that matches
numbers.

:syntax match Number /[0-9]\+/

13

Defining a region

Comments start with “comment”

End with “end-comment”

Vim syntax definition is:

:syntax region Comment

\ start=/comment/

\ end=/end-comment/

14

Defining a string

The problem:

“String with \” in it”

The solution

:syntax region String
\ start=/"/ end=/"/

\ skip=/\\"/

15

Highlighting TODO in comments

Define the region to be highlighted, but
only if “contained” in another element

:syntax region Todo \

\ start=/TODO:/ end=/$/
\ contained

16

Highlighting TODO in comments

Tell Vim that a comment can contain a
TODO:

:syntax region Comment

\ start=/comment/
\ end=/end-comment/

\ contains=Todo

17

Defining a one line syntax
element

Normally matches span lines. But with the
“oneline” option they do not.

:syntax region PreProc

\ start=/^#/
\ end=/$/ oneline

18

Continuation Lines

Revised PreProc – Notice contains clause.

:syntax region PreProc
\ start=/^#/ end=/$/

\ oneline
\ contains=LineContinue

● Note: You must clear out the old PreProc
definition before using this:

:syntax clear PreProc

19

Continuation Lines

Define continuation line

:syntax match LineContinue
\ /\\\n.*/ contained

Since this can contain a newline it
continues the previous line.

20

Fixing the highlight the same

Highlight both syntax elements the same.

:highlight link
\ LineContinue PreProc

21

Extreme Syntax Coloring

● Rainbow.vim – Syntax coloring to
highlight nested parenthesis.

● Use the option matchgroup to indicate
the group ends match one highlight and
the body another.

22

Autoloading Syntax Files

● Local Syntax files go in

$VIMRUNTIME/syntax/<l>.vim
Where <l> is the language name (as

defined by the filetype option)

Note: Filetype is controlled by the file:

 $VIMRUNTIME/filetype.vim

23

Syntax Help

● To get information about how to write a
syntax file use the command:

:help :syntax
● This file also describes the language

specific options. For example the C
specific options c_gnu

24

C Specific Options

● c_gnu

GNU gcc specific items
● c_comment_strings

strings and numbers inside
a comment

● c_space_errors

trailing white space and
spaces before a <Tab>

25

Advanced Syntax Items

● Any item which contains @Spell will be
spell checked.

● Any item which contains @NoSpell will
not be spell checked.

26

Keyboard Macros and
Mapping

27

Cheat Sheet Time

● Follow along in

i-map.vim

28

Keyboard Macro Example

The problem change lines like:

 foo.h
into

 #include <foo.h>
for lots of lines.

29

Keyboard Macros

q{register} Record commands into a
register

{commands} Execute commands

q End recording

@{register} Execute keyboard macro

30

Keyboard Macro Example

qa – Start recording in register a

^ – Go to beginning of line

i#include < esc – Insert #include

A> esc – Append > to the end of the line

j – go to the next line (Important)

q – Stop recording macro

31

Keyboard Macro Example

After recording use the command

 @a
to execute it.

To execute 5 times

 5@a

32

Keyboard Macros

● Advantages

Quick
Simple

● Disadvantages

Limited
Temporary

Impossible to Edit (almost)

33

Mapping

Make a mapping out of the macro

:map <F11> ^i#include
 <lt><ESC>A><ESC>j

(one line)

<F11> -- Key name

Rest of the line is the macro

<lt> -- Less than (there is no <gt>)

34

Making it Permanent

● To automatically define this mapping
when Vim starts put it in the file

$HOME/.vimrc

35

Modes and Mapping

● :cmap – Command line mode
● :imap – Insert mode only
● :lmap – Inputing a language dependent

argument for command mode or insert
mode.

● :map – Normal, visual, select, operator
pending.

● There's more

36

Modes and Mapping

● :map! – Command line and insert
● :nmap – Normal
● :omap – Operator pending
● :smap – Select
● :vmap – Visual and select
● :xmap – Visual

37

Mapping and modes

How the different mappings work
● Normal mode

:map <F11> ^i#include
<lt><ESC>A><ESC>j

● Insert mode

:imap <F11> <ESC>^i#include
<lt><ESC>A>

38

Adding it to the menu

Adding it to the menu of gvim.

:menu 40.290
&Tools.&Include<Tab>F11

<F11>

(one line)

39

Adding it to the menu

:menu 40.290
&Tools.&Include<Tab>F11

<F11>

(one line)

Menu
Priority Submenu

Priority

40

Adding it to the menu

:menu 40.290
&Tools.&Include<Tab>F11

<F11>

(one line)

Top Level
Menu Name Literal

(5 character)

Keyboard
equivalent

41

Finding Out What's in a Menu

● List all menu items

:menu
● List the Tools menu

:menu Tools
● List only our entry

:menu Tools.Include

42

Vim Scripting Syntax

43

Cheat Sheet

● We're now going through the file:

i-call.vim

44

Variable Types

● Variable names follow the usual rules
(case sensitive)

● Assignment

:let foo = “hello”

:echo foo

45

Prefixes denote name space

<none> -- In a function, local. Outside a
function, global.

b: -- Buffer specific

w: -- Window Specific

t: -- Tab Specific

g: -- Global

46

Prefixes denote name space

l: -- Local to a function

s: -- Local to a script

a: -- Function argument

v: -- System defined variable

47

Other types of “variables”

&option – The value of an option. The
local version is checked first, the the
global.

&l:option – Local version of the option.

&g:option – Global option

@register – Register

$ENV – Environment variable

48

Variable Variable Names

● If {} are used in a variable name, the
value of the variable inside the {}
becomes part of the name:

:let sam_name = “Sam”
:let joe_name = “Joe”

:let who = “joe”

:echo {who}_name

49

Expression Syntax

● Mostly the usual operators (+, -, *, etc.)
● Regular Expression comparison

str =~ “re”

50

String Comparison

● String compare, case insensitive

str ==? “value”
● String compare case sensitive

str ==# “value”
● String compare, maybe ignore case

(depending on 'ignorecase' option)

str == “value”

51

Sub-string expressions

● Single character

echo str[5]
● Substring

echo str[3:5]
● Next to last character

echo str[-2:-2]
● Character 5 on

echo str[5:]

52

“Include” Macro As a Function

:function! Include()
: " Get the current line
: let l:line = getline(".")

: " Put the #include in the right place
: let l:line = "#include <".l:line.">"

: " Replace the line
: call setline(".", l:line)
:endfunction

53

Defining the Function

● Functions names must begin with a
capitol.

● The force (!) operator allows us to
redefine an existing function.

:function! Include()
....

:endfunction

54

Get the line

● Comments begin with “. Makes it hard to
comment a string assignment.

● “.” is the current line. Assign it to a local
variable (l:line)

: " Get the current line
: let l:line = getline(".")

55

Add on the #include stuff

● The dot (.) operator concatenates strings.

:" Put the #include in
:” the right place

:let l:line =

\ "#include <".l:line.">"

56

Replace the line with the new
one

● Replace the line with the new one.
● Again “.” is the current line number.

: " Replace the line
: call setline(".", l:line)

57

Calling the Function

● To call the function, type:

:call Include()

● But that's too difficult, so let's map it:

:map <F11> :call Include()<CR>

58

Initializing Vim's GUI

● We will be putting our macro in the top
level menu. This must be done before
the menu is built.

● To run a script before the GUI is done:

gvim -U macro-file file

59

Initializing Vim's GUI

● All top level menu commands are ignored
after the GUI is built.

● If you want it to load automatically put it
in:

$HOME/.gvimrc
● WARNING: Do not put it in .vimrc, it won't

work

60

Diversion: Initialization
Problems

● Vim starts in Vi compatibility mode.
(Yuck)

● In Vi mode <F11> is 5 characters, not a
function key.

61

Initialization Solutions

● Save the compatibility options, then set
them to the Vim defaults

" Save options

:let s:cpo_save = &cpo
:set cpo&vim

● ... at the end restore them

:let &cpo = s:cpo_save

:unlet s:cpo_save

62

Problem: -U skips .gvimrc

● The file you specify with -U skips the
.gvimrc

● Solution #1. Two -U

–gvim -U m.vim -U ~/.gvimrc

63

Problem: -U skips .gvimrc

● Solution #2. Source it at the end of your
file:

:let &cpo = s:cpo_save

:unlet s:cpo_save
:source ~/.gvimrc

64

Putting the command in the
menu

:menu 40.290

\ &Tools.&Include<Tab>
\ call\ Include()

\ :call Include()
● But there is a problem. The commands

disappear in some modes

65

The Mode Problem

● Normal Mode ● Insert Mode

66

Let's look at what :menu did

:menu Tools.Include

--- Menus ---
290 &Include^I:call Include()

 n :call Include()<CR>

 v :call Include()<CR>

 s :call Include()<CR>

 o :call Include()<CR>

67

Define a menu item for all
modes

:amenu 40.295

\ &Tools.&Include(a)<Tab>

\ call\ Include()
\ :call Include()

68

Our menu looks different

:amenu Tools.Include(a)

--- Menus ---

295 &Include(a)^I:call Include()

 n :call Include()<CR>

 v <C-C>:call Include()<CR><C-\><C-G>

 s <C-C>:call Include()<CR><C-\><C-G>

 o <C-C>:call Include()<CR><C-\><C-G>

 i <C-O>:call Include()<CR>

 c <C-C>:call Include()<CR><C-\><C-G>

Press ENTER or type command to continue

69

What's happening

 v <C-C>:call Include()<CR><C-\><C-G>

V – Visual mode

<C-C> -- Exit visual mode

:call Include() -- The command

<C-\><C-G> -- Back go previous mode

70

What's happening

i <C-O>:call Include()<CR>

i – Insert mode

<C-O> -- Execute a single normal mode
code, then go into insert mode.

:call Include() -- The command

71

Adding it to the popup menu

● Add the call to the menu which pops up
when you press the right menu button.

:amenu 1.5

 PopUp.&Include:call\
Include() :call Include()

(one line)

● WARNING: You must have enable the
popup

:set mousemodel=popup

72

The new popup menu

73

Putting the command in the
toolbar

● The menu “Toolbar” is the top level tool
bar.

● You can include an icon specification in
the menu command as well as the normal
stuff.

:amenu icon=/home/sdo/vim
/include/include.xpm 1.1
ToolBar.Include
:call Include()

(one line)

74

Adding a tool tip to the toolbar
icon

:tmenu ToolBar.Include

\ Put in the #include line

75

Creating a top level menu

● Creates a top level menu C-Tools with a
single item

:amenu 30

\ &C-Tools.Include<Tab>F11
\ :call Include()

76

Enabling and disabling the
menu

● Enable

:menu enable &C-Tools

● Disable

:menu disable &C-Tools

77

The function to enable or
disable the C-Tools menu

Depending on file type (&ft) enable the
menu

:function CMenuCheck()
: if ((&ft == "c") || (&ft == "cpp"))
: :menu enable &C-Tools
: else
: :menu disable &C-Tools
: endif
:endfunction

78

Automatically Calling the
function

● Automatically call the function when a
buffer is entered.

:autocmd Bufenter *

\ :call CmenuCheck()
● Call it when the file type changes

:autocmd FileType *

\ :call CMenuCheck()

79

Cheetsheet time

● We've now moved on to:

i-cmd.vim

80

Creating a new command

● Defining a user command to do the
includes

:command! -nargs=0

-range Include
:call IncludeRange(

<line1>, <line2>)
(one line)

81

Defining a command

:command! -- Define a user command

-nargs=0 – Number of arguments

-range – Can take a line range as input

Include – Name of the command (User
commands must start with upper case
letter)

:call.... -- Command to execute

<line1>, <line2> -- Start / Ending lines
for the command.

82

Definition of IncludeRange with
debugging code

:function! IncludeRange(first_line, last_line)
: let l:cur_line = a:first_line
:
: while (l:cur_line < a:last_line)
: call setpos('.', [0, l:cur_line, 0, 0])
: call Include()
" Debug stuff
:echo l:cur_line
:redraw
:sleep 5
: let l:cur_line = l:cur_line + 1
: endwhile
:endfunction

83

Starting off

● Function takes two arguments, a first line
and a last line.

:function! IncludeRange(first_line, last_line)

● Define a variable to loop through the lines
: let l:cur_line = a:first_line

84

Move the Cursor to the given
line

● Loop through each line
: while (l:cur_line < a:last_line)

● Move the cursor ('.') to the given

 [buffer, line, character, offset]

: call setpos('.', [0, l:cur_line, 0, 0])

● Call the Include() function

: call Include()

85

Debug Stuff

● Print the current line
● Redraw the screen (show partial progress)
● Sleep for 5 seconds (to make sure we can

see what happened)
" Debug stuff
:echo l:cur_line
:redraw
:sleep 5

86

Finishing Up

● Finishing up

: let l:cur_line = l:cur_line + 1
: endwhile
:endfunction

87

Defining a better command

:command! -nargs=0

-range Include2

<line1>, <line2>:call
Include()

(one line)
● If a <range> is specified for :call, then

the function is called once for each line.

88

Review: What we can do with
functions

1. Call them directly (:call)

2. Map them to a key (:map)

3. Put them in the menu (:amenu)

4. Put them in the toolbar (:amenu
toolbar)

5. Put them in the popup menu (:amenu
popup)

6. Create a user command to call them
(:command)

89

Improving the Include function

● Checks local directories for the file
● If local puts in #include “file.h”
● Checks system directories
● If found puts in #include <file.h>

90

Cheat Cheat

● Moving on we reach the cheat sheet

i-fancy.vim

91

Improved Include function

First some definitions

" System include dirs
:let g:SystemIncludes = [
\ "/usr/include",
.....
\]
" Local includes follow
:let g:LocalIncludes = [
...

92

Define the function

● Some starting code to get the line

:function! Include()

: " Get the current line

: let l:line = getline(".")

93

Loop through the dirs

: for l:cur_dir in g:LocalIncludes

: if (filereadable(l:cur_dir."/".l:line))

: let l:line =

\ "#include \"".l:line."\""

: call setline(".", l:line)

: return

: endif

: endfor

● Do the same thing for the system dirs

94

Debugging the function

● To start the debugger

:debug call Include()
● Debugging commands

:echo – Display expression

:step – Single Step
:next – Skip over function

95

Debugging the function

● Setting a breakpoint

:breakadd func <line>
<function>

96

Debugging Commands

● Running a command with the debug:

:debug call Include()
● Turning on the verbose chatter:

:16verbose call Include()
● Setting the verbose level:

:set verbose=16

97

Saving the output

● To log the output

:redir! >log.txt
● To stop logging

:redir END

98

The Configuration Problem

● We must configure the thing by setting
two global variables.

● There is a Vim option called path. Why
can't we use that?

99

Cheat Sheet

● Almost done with include. Take a look at:

i-path.vim

100

Revised Function

● Turn the path option (&path) into a list of
directories.

:let l:dir_list =

\ split(&path, ",")

101

Revised Function

● Loop through each entry looking for the
file

:for l:cur_dir in l:dir_list

:if (filereadable(

 l:cur_dir."/".l:line))

102

Revised function

● System directory?

if (match(l:cur_dir,
\ "/usr/include") == 0)

: let l:line =

\ "#include <".l:line.">"

103

Demonstration of
Fancy Include

Function

104

GUI Version of the Include

● This version asks you which type of
include (system, local) you want and does
the work accordingly.

105

Cheat Sheet

● The cheat sheet for this is

i-gui.vim

106

Displaying a Dialog Box

● Let's display a dialog box with three
choices:

: let l:choice =
confirm("What type of #include
is ".l:line."?",

"&System\n&Local\nNo \&Change")

107

The Dialog Box

108

confirm() return values

1. System

2. Local

3. No Change

0. Dialog was closed manually

109

Dealing with the result

: if (l:choice == 1)
: let l:line = "#include <".l:line.">"
: call setline(".", l:line)
: return
: elseif (l:choice == 2)
: let l:line = "#include \"".l:line."\""
: call setline(".", l:line)
: return
: elseif (l:choice == 3)
: return
: elseif (l:choice == 0)
: throw "WARNING: You closed the dialog!"
: else
: throw "ERROR: There is no choice
".l:choice." Huh?"

: endif

110

Demonstration

GUI Based
#include generator

111

Congradulations

#include is now
exhausted

112

Java Editing Function

● Define a function to make Java editing
easier

● Automatically adds the “getter” for a java
program.

113

Cheat Sheet

● Our first java cheat sheets:

g1.vim
bean.java

114

Java – Adding the getter

● What we have

class bean {

 private int value;
};

115

What we want

class bean {

 private int value;

 public int getValue() {

 return (value);
 }

};

116

Algorithm

1. Parse the line under the cursor.
Determine the variable's name and type.

2. Search backward for “class”

3. Search forward for “{“

4. Finding matching “}”

5. Insert the getter code.

117

1. Parsing the line

:function! Getter()
: " Get the line defining the variable
: let l:var_line = getline('.')

: let l:prot = substitute(l:var_line,
'\v^\W*(\w+)\W+.*$', '\1', '')

: let l:type = substitute(l:var_line,
'\v^\W*\w+\W+(\w+)\W+.*$', '\1', '')

: let l:var = substitute(l:var_line,
'\v^\W*\w+\W+\w+\W+(\w+).*', '\1', '')

118

Notes on step 1.

● Can you make the regular expressions a
little more complex?

A: Absolutely You should see my talk on
regular expressions.

● What do they all mean?

A: Use the :match command in Vim to find
out. It highlights text matched by a
regular expression.

119

Regular Expression Exploded

\v – Make all the following characters
special except digits and letters

^ -- Start of line

\W* -- Whitespace (\W) zero or more times
(*)

(\w+) -- Place matching item in \1. Word
characters (\w), one or more times (+)

120

Regular Expression Exploded

\W+ -- Whitespace (\W) one or more times
(+)

.* -- Any character (.) zero or more times
(*)

$ -- End of line.

121

A short demonstration of
:match

122

Sanity Checking

:if ((l:prot != 'public')

\ && (l:prot != 'private')

\ && (l:prot !=
\ 'protected'))

: throw "ERROR: Unable
to parse variable line"

:endif

123

2. Reverse search for “class”

:if (search(

\ 'class', 'b') == 0)

: throw "ERROR:"
:endif

124

3. Forward search for “{“

:if (search(

 '{', '') == 0)

: throw "ERROR:"
:endif

125

4. Finding the matching “}”

 %
● Simple wasn't it.

126

5. Compute the function name

● Substitute in l:var
● Everything (.*)
● Make next (first) character upper case

(\u) and then everything else the same
(&)

: let l:fun_name =
 substitute(l:var,

 '.*',
 '\u&', '')

127

Computing the text to insert

:let l:getter = [" /**",
\ " * Get the current value of ".l:var,
\ " *",
\ " * @returns ".l:var,
\ " */",
\ " public ".l:type." get".l:fun_name."() {",
\ " return(".l:var.");",
\ " }"
\]

128

Insert the text

: let l:where = line('.')

: let l:where = l:where - 1

: call append(
\ l:where, l:getter)

129

Demonstration

Live Demo of Getter Version 1

130

For those who came in late

● I am Steve Oualline
● Slides and cheat sheets at

–www.oualline.com/vim.talk

131

But what about mean
programmers?

class mean {

 /* comment with

 * “class” in it
 * and “}” as well

 */
 private int value;

132

Cheat Sheet Time

● We now go to the nasty bean and the
getter for it.

mean.java

g2.vim

133

Fixing the problem

● We don't have to get clever because Vim
already is.

● We just need to look for “class” which is
syntax colored as a Java keyword.

● To find the name syntax item the cursor
is sitting on:

:echo synIDattr(synID(
\ line('.'), col('.'), 1),

\ 'name')

134

Function synID

synID(line, col, trans)
● line – Line number of the item
● col – Column number of the item
● trans – If set transparent items are

reduced to the base syntax

135

Function synIDattr

synIDattr(id, what)
● id – The syntax id number
● what – What to get ('name' is the name of

the item.)

136

Revised “class” search

:while (1)
: if (search('class', 'b') == 0)
: throw 'ERROR: Could
: endif
: if (synIDattr(
\ synID(line('.'), col('.'), 1),
\ 'name') == 'javaClassDecl')
: break
: endif
:endwhile

137

getter Limitations

● Does not handle complex types such as:

java.util.Map foo;
● Solution: Better regular expressions

● Does not indent the function properly
● Solution: Use Vim's :indent command.

138

Vim and Perl
Programming

139

First Lesson of Programming

● Remember Vim has a filter command (!)
that let's you filter text through an
external program.

● Use that and you don't have to mess
around with Vim programming

140

Introducing the Players

● tab.pm – Module containing one
function: make_tab.

● Turns a series of lines into column aligned
lines.

● tab.pl – Program that passes all it's input
through make_tab.

● perl.vim – Interface module between Vim
and tab.pm.

141

Getting Started

● The program tab.pl is a stand alone filter
that can be run from the command line.

● We can use it (without special work) from
withing Vim by using the filter (!)
command.

142

First step: Vim and Perl

● Perl is not compiled in by default
● Always make sure you have the module

before defining a script

:if ! has('perl')

: throw "ERROR: This
version of Vim has no Perl
feature"

:endif

143

Perl Related Commands

● Putting Perl Code in Vim

:perl <<EOF
... perl code ...

EOF
● Filter a set of lines through perl

:<range>perldo <command>

144

Perl / Vim Interface

● Output a message

VIM::Msg(“Hello World”);
● Vim also supplies you with a set of

Window and Buffer objects with which to
play width:

my $window = $main::curwin;

my ($row, $column) =

 $window->Cursor();

145

Getting help

● For information about the Vim/Perl
interface:

:help :perl

146

:perl <<EOF
Real work done here
require 'tab.pm';

sub tab_lines($$) {
 my $start = shift;
 my $end = shift;
 my $cur_buf = $main::curbuf;

 my @lines =
 $cur_buf->Get($start..$end);
 @lines = make_tab(@lines);
 $cur_buf->Set($start, @lines);
}
EOF

147

● Bring in the other module

:perl <<EOF
Real work done here
require 'tab.pm';

● Define a function with two arguments

sub tab_lines($$) {
 my $start = shift;
 my $end = shift;

Initial work

148

● Get the lines, push them through the
function, put them back in the buffer

 my $cur_buf = $main::curbuf;
 my @lines =
 $cur_buf->Get($start..$end);
 @lines = make_tab(@lines);
 $cur_buf->Set($start, @lines);

Process the lines

149

Now link the perl function to a
Vim command

:command! -nargs=0 -range Table
\ :perl tab_lines(
\ <line1>, <line2>)

150

Perl
Demonstration

151

More Perl / Vim Interface

● Global variables

$main::curwin
● The current window object.

$main::curbuf
● The current buffer object.

152

Message Functions

● Simple Message

VIM::Msg("Text")
Message with highlighting

VIM::Msg(

\ "remark", "Comment")

153

Option Related Functions

● Set option

VIM::SetOption("opt")
● Getting an option

my $opt =
VIM::Eval(“&opt”);

154

Buffer and Window Information

● Get a list of buffer

@buflist = VIM::Buffers()
● Get buffers for a specific file

@buf =

 (VIM::Buffers('file'))
● Get Window List

@winlist = VIM::Windows()

155

Window Operations
● Set height

 $window->SetHeight(10)
● Get cursor location (row, column)

($row, $col)=
 $window->Cursor()

● Set cursor location

$window->Cursor($row, $col)
● Get the buffer for the window

$mybuf = $curwin->Buffer()

156

Buffer Information

● Get the buffer's name

$name =$buffer->Name()
● Get the buffer's number

$number = $buffer->Number()
● Get the number of lines in the buffer

$lines = $buffer->Count()

157

Buffer Data

● Get a line or array of lines

$line=$buffer->Get($number)
@lines = $buffer->Get(
 @number_array)

● Setting a line or set of lines
$buffer->Set(
 $number, $line)
$buffer->Set($start_number,
 @line_array)

158

Buffer Data

● Deleting lines

$buffer->Delete($line)
$buffer->Delete(
 $start, $end)

● Adding lines

$buffer->Append(
 $number, $line)
$buffer->Append(
 $number, @line_array)

159

Advanced Topics

160

Dictionaries

● Defining a dictionary variable

:let g:dict = {
 “key” : “value”,

 “key2” : “value2” }
● Getting a value

echo dict[“key”]
● Setting a value

let dict[“key3”] = “value3”

161

Exceptions

:try

: “ do something

:catch /ERROR/
: “ fix something

:finally
: “ Finish up

:endtry

162

Plugins

● Plugins are automatically loaded with Vim
starts

● Local Plugins

~/.vim/plugin/file.vim
● Global Plugins

$VIMRUNTMIE/plugin/file.vim

163

Special Plugins

● Syntax coloring files

$VIMRUNTIME/syntax/lang.vim
● Indentation functions

$VIMRUNTIME/indent/lang.vim

164

Autoloading Functions

Please don't autoload
Unless you really

really have to

165

Autloading

1.Define your functions

:function! CallMe()
2.Put them in the file:

~/.vim/autoload/file.vim
3. Call the function using the magic call:

:call file#CallMe()

166

Improvements Yet to be made

● All scripts can be improved. Here are
some things we didn't do in the scripts for
this class.

1. Use findfile() to locate the #include
instead of going through the directory list
one at a time.

2. Use expand('<cword>') to get the word
under the cursor in our getter function.

167

Getting Scripts

● The Vim site (http://www.vim.org)
contains a link to a script library.

● Lots of scripts of varying quality are
available

168

Irony

● This class presented many many different
ways of automatically generating
#include lines.

● What way does the author use?

:ab #i #include
● When #i is typed in Vim, #include will be

inserted.

169

Finally: Remember

Vim is
Charity-Ware

170

Please Donate

 ICCF Holland - helping
children in Uganda

171

Vital Information

1) Please fill out your evaulations.

Vim Class / Steve Oualline
www.orielly.com/go/os07tuteval

2) Course Materials Can Be Downloaded
from:

http://www.oualline.com/vim.talk

3) Donate. For Information, start Vim then
enter the command:

:help uganda

